Search results for "Propositional variable"

showing 1 items of 1 documents

Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization With Medical Applications

2019

Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled tex…

FOS: Computer and information sciencesComputer Science - Machine LearningGeneral Computer ScienceComputer sciencetext categorizationNatural language understandingDecision treeMachine Learning (stat.ML)02 engineering and technologyVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559Machine learningcomputer.software_genresupervised learningMachine Learning (cs.LG)Naive Bayes classifierText miningStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTsetlin machinehealth informaticsInterpretabilityPropositional variableClassification algorithmsArtificial neural networkbusiness.industryDeep learning020208 electrical & electronic engineeringGeneral EngineeringRandom forestSupport vector machinemachine learningCategorization020201 artificial intelligence & image processingArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinessPrecision and recallcomputerlcsh:TK1-9971
researchProduct